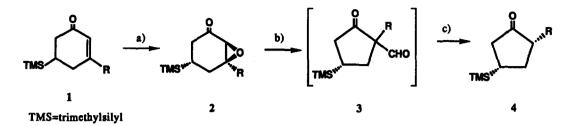
Tetrahedron Letters, Vol.31, No.33, pp 4761-4764, 1990 Printed in Great Britain

SYNTHESIS AND UTILIZATION OF OPTICALLY ACTIVE 2-SUBSTITUTED 4-(TRIMETHYLSILYL)CYCLOPENTANONES: SYNTHESIS OF (-)-MASSOIALACTONE AND (+)-\$-CUPARENONE

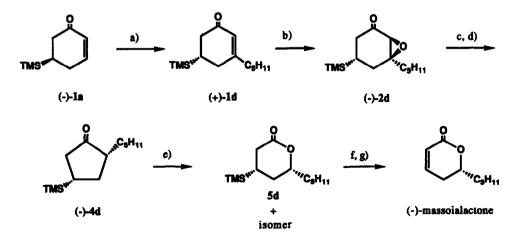

Morio ASAOKA,^{*} Satoshi HAYASHIBE, Syuzo SONODA, and Hisashi TAKEI Department of Life Chemistry, Tokyo Institute of Technology, Midoriku, Yokohama 227, Japan

Summary: Ring contraction by $BF_3 \cdot Et_2O$ catalyzed epoxide rearrangement of 3-substituted 5-trimethylsily1-2,3-epoxycyclohexanones gave the corresponding 2-substituted 4-(trimethylsily1)cyclopentanones diastereoselectively. Synthesis of (-)-massoialactone and (+)- β cuparenone utilizing the above transformation is also described.

In connection with our interest in utilizing optically active 5trimethylsilyl-2-cyclohexenones in the natural product synthesis,¹⁾ we planned to expand our strategy, the trimethylsilyl group directed construction of chiral centers onto alicyclic compounds, to trimethylsilyl substituted cyclopentanones. Thus, the transformation of cyclohexenones 1 into the cyclopentanone derivatives 4 utilizing an epoxide rearrangement²) and utilization of the products in natural product synthesis were studied (Scheme 1).

Enones 1b-1g were easily prepared from 1a (R=H) by the reported method³⁾ in 73-90% overall yields. The epoxidation of 3-alkyl-2cyclohexenones 1b-1e proceeded smoothly under the conventional conditions (Method A: 2 eq of 35% H_2O_2 , cat. 6 M NaOH, MeOH, at 0 °C, 0.5-1.5 h)⁴⁾, however, for aromatic derivatives such as 3-phenyl and 3-p-tolyl derivatives (1g and 1f), a slightly modified method, use of ethanolic solution of benzyltrimethylammonium hydroxide (1 eq) in place of methanolic NaOH in the presence of large excess of 35% H_2O_2 (10 eq) at room temperature for 15 min (Method B), was necessary. The diastereoselectivity in this epoxidation was proved to be >20:1 as long as estimated by ¹³C NMR.

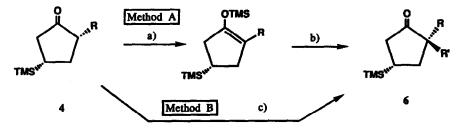
The Lewis acid $(BF_3 \cdot Et_2 0)$ catalyzed epoxide rearrangement of 2b-2g followed by base (6 M NaOH) treatment²⁾ afforded 2-substituted 4-(trimethylsilyl)cyclopentanones 4b-4g with high diastereo purity (>20:1) in good to high overall yields (61-93% from 2). Presumably owing to the high cation stabilizing ability of the aromatic groups, the yields of 4f and 4g are higher than those of alkyl derivatives.



Scheme 1. a) H_2O_2 , cat. base; b) $BF_3 \cdot Et_2O$; c) NaOH.

Entry	1	R	Method	Yield of 2 (%)	Yield of 4 (%)
1	1b	Me	Α	76	69
2	1c	Et	Α	76	67
3	1đ	n-C5 ^H 11 ⁻	A	90	77
4	1e		A	83	61
5	١f	Ph	В	58	91
6	1g	p-Tol	в	68	93

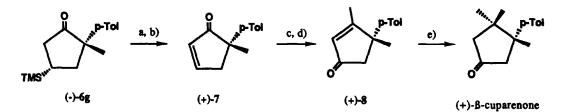
Table 1 Epoxidation of 1 and rearrangement of 2 with $BF_3 \cdot Et_2 O$.


To confirm the diastereostructure of 4 and to estimate the utility of 4 in natural product synthesis, the synthesis of (-)-massoialactone^{5,6} starting with (-)-1a was carried out (Scheme 2).

Scheme 2. a) Ref. 3; b) H_2O_2 , cat. base; c) $BF_3 \cdot Et_2O$; d) NaOH; e) m-CPBA; f) LDA, Br_2 ; g) Bu_4NF .

After the transformation of (-)-1a into (-)-4d as described above, the Baeyer-Villiger oxidation of (-)-4d (m-CPBA, 0 °C, Na₂HPO₄, CH₂Cl₂-H₂O) gave an approximately 4:1 mixture of lactones (5d and the alternative possible regio-isomer) in 87% yield which was subsequently transferred into (-)-massoialactone $[[\emptyset]_D^{19}-96.3^{\circ}(c\ 1.26, CHCl_3);$ lit. $[\emptyset]_D^{25}-99.4^{\circ}(c\ 1.04, CHCl_3), ^{6}$ $[\emptyset]_D^{-110.5^{\circ}}(c\ 2.5, CHCl_3), ^{7a}$ and $[\emptyset]_D^{36}-108.4^{\circ}(c\ 2.7, CHCl_3)^{7b}]$ by bromination followed by debromosilylation with tetrabutylammonium fluoride (31% overall yield from the mixture of lactones). It is apparent from the above results, that the stereochemistry of 4 is cis and the cyclopentanones 4 prepared by this method possess enough optical purity for the enantioselective synthesis of natural products.

As a further application of 4 to the natural product synthesis, diastereoselectivity in the alkylation at 2-position was examined. Two methods were used for the alkylation of 4. For the aryl group substituted cyclopentanones (4f-4g), base (NaH) treatment followed by methylation gave successful results. However, in the case of alkyl group substituted derivatives (4b-4c), alkylation of lithium enolate, generated via enol silyl ether, in the presence of trimethylaluminum⁸ was used. ¹³C NMR spectra of 6 show the high diastereo purities (>20:1->10:1) of the products.


Scheme 3. a) i-Pr₂NMgBr, TMSCI; b) McLi, Me₃Al, R'X; c) NaH, R'X.

Entry	4	R'X	Method	Yield of 6 (%)
1	4b	Prenyl-Br ^a)	A	70
2	4 c	Prenyl-Br ^{a)}	А	68
3	4f	Me-I	В	77
4	4g	Me-I	в	85

Table 2Alkylation of 4.

a) Prenyl: 3-methyl-2-butenyl.

To confirm the diastereo structure of 6, the synthesis of $(+)-\beta$ -cuparenone starting with (-)-1a was carried out.

Scheme 4. a) C₅H₅NHBr₃; b) Bu₄NF; c) MeLi; d) PDC; e) MeCu-BF₃.

Bromination of (-)-6g, which was prepared from (-)-1a as described above, with pyridinium bromide perbromide followed by treatment with tetrabutylammonium fluoride gave enone (+)-7 in 78% yield. Addition of methyllithium and subsequent oxidation with PDC gave (+)-8 in 97% yield. 1,4-Addition of methylcopper reagent in the presence of $\mathrm{BF_3}^{9}$ afforded (+)- β -cuparenone [[\emptyset]_D²³+44.4°(c 2.47, CHCl₃), lit. [\emptyset]_D²⁹+45°(c 1.4, CHCl₃)¹⁰) and [\emptyset]_D³⁰+48.0°(CHCl₃)¹¹] in 64% yield.

References

- M. Asaoka, K. Shima, N. Fujii, and H. Takei, Tetrahedron, 44, 4757 (1988); M. Asaoka and H. Takei, Yuki Gosei Kagaku Kyokaishi, 48, 216 (1990), and references therein.
- G. D. Ryerson, R. L. Wasson, and H. O. House, Org. Synth., Coll. Vol. 4, 957 (1963).
- M. Asaoka, K. Takenouchi, and H. Takei, Tetrahedron Lett., 29, 325 (1988).
- 4) R. L. Wasson and H. O. House, Org. Synth., Coll. Vol. 4, 522 (1963).
- 5) K. Mori, Agric. Biol. Chem., 40, 1617 (1976); G. W. K. Cavill, D. V. Clark, and F. B. Whitfield, Aust. J. Chem., 21, 2819 (1968).
- 6) R. Kaiser and D. Lamparsky, Tetrahedron Lett., 1976, 1659.
- 7) a) W. H. Pirkle and P. E. Adams, J. Org. Chem., 45, 4117 (1980);
 b) F. Bennett and D. W. Knight, Heterocycles, 29, 639 (1989).
- 8) P. A. Tardella, Tetrahedron Lett., 1969, 1117.
- 9) Y. Yamamoto and K. Maruyama, J. Am. Chem. Soc., 100, 3240 (1978).
- A. E. Greene, F. Charbonnier, M-J. Luche, and A. Moyano, J. Am. Chem. Soc., 109, 4752 (1987).
- 11) G. L. Chetty and S. Dev, Tetrahedron Lett., 1964, 73.

(Received in Japan 23 April 1990)